Type: RemoteJudge 1000ms 512MiB

上升点列

You cannot submit for this problem because the contest is ended. You can click "Open in Problem Set" to view this problem in normal mode.

题目描述

在一个二维平面内,给定 nn 个整数点 (xi,yi)(x_i, y_i),此外你还可以自由添加 kk 个整数点。

你在自由添加 kk 个点后,还需要从 n+kn + k 个点中选出若干个整数点并组成一个序列,使得序列中任意相邻两点间的欧几里得距离恰好为 11 而且横坐标、纵坐标值均单调不减,即 xi+1xi=1,yi+1=yix_{i+1} - x_i = 1, y_{i+1} = y_iyi+1yi=1,xi+1=xiy_{i+1} - y_i = 1, x_{i+1} = x_i。请给出满足条件的序列的最大长度。

输入格式

第一行两个正整数 n,kn, k 分别表示给定的整点个数、可自由添加的整点个数。

接下来 nn 行,第 ii 行两个正整数 xi,yix_i, y_i 表示给定的第 ii 个点的横纵坐标。

输出格式

输出一个整数表示满足要求的序列的最大长度。

8 2
3 1
3 2
3 3
3 6
1 2
2 2
5 5
5 3
8
4 100
10 10
15 25
20 20
30 30
103

提示

【样例 #3】

见附件中的 point/point3.inpoint/point3.ans

第三个样例满足 k=0k = 0

【样例 #4】

见附件中的 point/point4.inpoint/point4.ans

【数据范围】

保证对于所有数据满足:1n5001 \leq n \leq 5000k1000 \leq k \leq 100。对于所有给定的整点,其横纵坐标 1xi,yi1091 \leq x_i, y_i \leq {10}^9,且保证所有给定的点互不重合。对于自由添加的整点,其横纵坐标不受限制。

测试点编号 nn \leq kk \leq xi,yix_i,y_i \leq
121 \sim 2 1010 00 1010
343 \sim 4 100100 100100
575 \sim 7 500500 00
8108 \sim 10 109{10}^9
111511 \sim 15 100100 100100
162016 \sim 20 109{10}^9

北辰OI模拟测试

Not Attended
Status
Done
Rule
IOI
Problem
10
Start at
2023-11-9 18:00
End at
2023-11-9 20:00
Duration
2 hour(s)
Host
Partic.
2